LESSON 5.1a

nth Roots and Rational Exponents

Today you will:

- Find nth roots of numbers.
- Evaluate expressions with rational exponents.
- Practice using English to describe math processes and equations

Core Vocabulary:

- radical form
- nth root of a, p. 238
- index of a radical, p. 238

Previous:

- square root
- cube root
- exponent

Radical Form

$$\sqrt{4} = \sqrt[?]{4} = \sqrt[2]{4} = square \ root \ of \ 4 = 4^{?} = 4^{\frac{1}{2}}$$

Radical Form Rational Exponent Form

Radical Form	How we say it	Rational Exponent Form		
$\sqrt[2]{a}$	Square root of <i>a</i>	$a^{\frac{1}{2}}$		
$\sqrt[3]{a}$	Cube root of <i>a</i>	$a^{\frac{1}{3}}$		
$\sqrt[4]{a}$	4^{th} root of a	$a^{\frac{1}{4}}$		
$\sqrt[n]{a}$	n^{th} root of a	$a^{\frac{1}{n}}$		

What does $\sqrt[2]{25}$ mean?

- Find the square root of 25.
- Find the number that times itself **2** times equals **25**.

What does $\sqrt[5]{32}$ mean?

- Find the 5th root of 32.
- Find the number that times itself **5** times equals **32**.

What does $\sqrt[n]{a}$ mean?

- Find the *n*th root of *a*.
- Find the number that times itself *n* times equals *a*.

It is ***REALLY*** helpful to know the 1st few powers of up to 5...

Power	Powers of 2	Powers of 3	Powers of 4	Powers of 5
1	2	3	4	5
2	4	9	16	25
3	8	27	64	125
4	16	81	256	
5	32	243		
6	64			

UNDERSTANDING MATHEMATICAL TERMS

When *n* is even and a > 0, there are two real roots. The positive root is called the *principal root*.

Real nth Roots of a

a < 0 No real *n*th roots

a = 0 One real *n*th root: $\sqrt[n]{0} = 0$

Let *n* be an integer (n > 1) and let *a* be a real number.

n is an even integer.

a > 0 Two real *n*th roots: $\pm \sqrt[n]{a} = \pm a^{1/n}$

n is an odd integer.

a < 0 One real *n*th root: $\sqrt[n]{a} = a^{1/n}$

$$a = 0$$
 One real *n*th root: $\sqrt[n]{0} = 0$

a > 0 One real *n*th root: $\sqrt[n]{a} = a^{1/n}$

Find the indicated real *n*th root(s) of *a*.

An *n*th root of *a* is written as $\sqrt[n]{a}$.

a. *n* = 3, *a* = -216 **b.** *n* = 4, *a* = 81

Remember:

...and $\sqrt[n]{a} = a^{1/n}$ Answer in radical form Answer in rational exponent form SOLUTION a. Because n = 3 is odd and a = -216 < 0, -216 has one real cube root. Because $(-6)^3 = -216$, you can write $\sqrt[3]{-216} = -6$ or $(-216)^{1/3} = -6$. b. Because n = 4 is even and a = 81 > 0, 81 has two real fourth roots.

Because $3^4 = 81$ and $(-3)^4 = 81$, you can write $\sqrt[4]{81} = \pm 3$ or $81^{1/4} = \pm 3$.

Some basic properties of Radicals

These work:

$$\sqrt[n]{a^{m}} = a^{\frac{m}{n}} because^{n}\sqrt{a^{m}} = (a^{m})^{\frac{1}{n}} = a^{\frac{m}{n}}$$
$$\left(\sqrt[n]{a}\right)^{m} = a^{\frac{m}{n}}$$
$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

EXAMPLE 2

Evaluating Expressions with Rational Exponents

Evaluate each expression.

a. 16^{3/2}

SOLUTION

Rational Exponent Form

a.
$$16^{3/2} = (16^{1/2})^3 = 4^3 = 64$$

b. $32^{-3/5} = \frac{1}{32^{3/5}} = \frac{1}{(32^{1/5})^3} = \frac{1}{2^3} = \frac{1}{8}$

Radical Form $16^{3/2} = (\sqrt{16})^3 = 4^3 = 64$ $32^{-3/5} = \frac{1}{32^{3/5}} = \frac{1}{(\sqrt[5]{32})^3} = \frac{1}{2^3} = \frac{1}{8}$

Using a calc to evaluate radicals

- 1. Convert the radical to rational exponent form.
- 2. Then enter the base in the calculator.
- 3. Hit the "^" key.
- 4. Finally enter the fractional exponent *inside parentheses*.

Evaluate each expression using a calculator. Round your answer to two decimal places.

Be sure to use parentheses to enclose a rational exponent: $9^{(1/5)} \approx 1.55$. Without them, the calculator evaluates a power and then divides: $9^{1/5} = 1.8$.

COMMON ERROR

a. 9^{1/5}

b. 12^{3/8}

c. $(\sqrt[4]{7})^3$

SOLUTION

a. $9^{1/5} \approx 1.55$

b. $12^{3/8} \approx 2.54$

c. Before evaluating $(\sqrt[4]{7})^3$, rewrite the expression in rational exponent form.

9^(1/5) 12^(3/8) 7^(3/4) 1.551845574 2.539176951 4.303517071

$$\left(\sqrt[4]{7}\right)^3 = 7^{3/4} \approx 4.30$$

Homework

Pg 241, #1-34